IEEE (Institute of Electrical and Electronics Engineers,电机电子工程师学会) 的EPS (Electronics Packaging Society,电子封装学会于2月举行了「2025异质集成蓝图第8届年会」[1]。在为期3天的年会中,来自产、学、研不同领域的专家针对先进封装于AI需求及性能表现方面的议题发表了精辟的研究成果;很明显的,AI成为了先进封装的发展核心。在摩尔定律已走到尽头的时候,为了达到AI训练及运作的高性能需求,封装技术的再精进似乎成了唯一选项。由宾州州立大学(Penn State University)电机工程系系主任Madhavan Swaminathan教授主导的CHIMES研究中心,正在积极探索异质集成在AI硬件上的应用与挑战。CHIMES(Center for Heterogeneous Integration of Micro Electronic Systems)由美国宾州州立大学主导,整合了来自乔治亚理工、UCLA、MIT等多所名校与产业伙伴,是JUMP 2.0计划[2]的旗舰研究中心。
图1. 庞大的AI模型背后代表庞大能耗支出。 图片来源:“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.(Madhavan Swaminathan教授简报数据)
图4.CHIMES目标的高效率电源架构; 图片来源:“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.(Madhavan Swaminathan教授简报数据)
(2) 挑战2:散热 — 不能让AI烧掉自己
AI芯片密度高,散热压力巨大。CHIMES发展出以下解方:
AlN高导热散热涂层:晶粒间隙填充可导热材料,提升热扩散效率。
蒸发式冷却与微流体通道:直接导入晶粒背面,解决超过30kW/cm²的热通量。
内嵌冷却芯片:将冷却结构嵌入芯片与基板之间,提升本体热控能力。
图5.CHIMES为高密度AI芯片发展出解方; 图片来源:“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.(Madhavan Swaminathan教授简报数据)
(3) 挑战3:如何快速设计这么复杂的系统?
面对横跨50,000mm²的系统封装,传统EDA设计工具显得力不从心。CHIMES提出:
跨层级自动化设计平台:整合电路、热控、封装与可靠性考虑。
全新验证与签核流程:支持M3D(Monolithic 3D)架构的设计与整合。
图6.CHIMES为大型系统封装提出解方 (目标);图片来源:“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.(Madhavan Swaminathan教授简报数据)
图7. 用于基板数据传输的 3D 整合波导;图片来源:“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.(Madhavan Swaminathan教授简报数据)
HI不只是技术,更是AI时代的基础建设
Swaminathan教授表示,CHIMES计划不仅代表前瞻技术,更揭示一个趋势:AI的创新,不能只靠算法与模型,硬件创新必须跟上,甚至领先。从多晶粒封装、热管理、电源转换到光子传输,异质整合技术正在构筑AI时代的基础建设。Moore’s Law 虽已不再是黄金定律,但HI正带领我们走向摩尔的下一站。
圖8. AI的創新,不能只靠演算法與模型,硬體創新必須跟上,甚至領先;圖片來源:“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.(Madhavan Swaminathan教授簡報資料)
[2] Joint University Microelectronics Program 2.0 (JUMP 2.0)
参考数据:
1.“Is Heterogeneous Integration (HI) ready for Artificial Intelligence (AI) ?”, Madhavan Swaminathan, Dept. Head of Electrical Engineering, William E. Leonhard Endowed Chair, and Director, CHIMES (an SRC JUMP 2.0 Center) of Pennsylvania State University; Emeritus Professor, ECE & MSE, Georgia Tech and Former Director, 3D Systems Packaging Research Center (PRC), Georgia Tech.